当前位置: 首页> 范文大全> 辞职报告>

各种估计总体标准差方法的误差分析和比较研究(上)

发布时间:2022-03-28 08:39:38 浏览数:

[摘 要]本文全面地介绍了估计总体标准差的7种主要统计方法:贝塞尔公式法(最为常用)、彼得斯公式法、极差法、最大误差法、最大残差法、较差法和最大方差法。系统地研究了各种估计总体标准差统计方法的由来和原理,严谨地推导出了其标准差系数的计算公式。根据标准差系数大小所反映出的测量精密度高低可分析比较出各种估计总体标准差统计方法的优劣及其适用范围。

[关键词]总体标准差;参数估计;无偏估计;系统误差;随机误差;综合误差;测量不确定度;自由度;标准差系数

[中图分类号]O 212 [文献标识码]A [文章编号]1005-6432(2013)10-0023-011

1 引 言

在科学实验中,测量可分为常量测量和变量测量两大类。物理量的变化量远小于测量仪器误差范围的测量称为常量测量(又称经典测量、基础测量),其核心理论是误差理论[1-3],误差理论的基本单元是误差元(测量值减真值)。测量仪器误差范围远小于物理量的变化量的测量称为变量测量(又称统计测量),其核心理论是数理统计理论(概率论是其理论基础),数理统计理论的基本单元是偏差元(又称离差元,测量值减数学期望)。标准差(standard deviation,又称标准偏差、均方差,其英文缩写词为SD,此术语1893年由卡尔·皮尔逊首创)是用来衡量一组测量数据的离散程度的统计量,它反映了随机变量的取值与其数学期望的偏离程度。经典测量学只能处理常量测量问题,而当今频域界的频率稳定度测量(常用阿伦方差表示)则属于变量测量。

等精度测量(equally accurate measurement)是指在测量条件(包括测量仪器的准确度、观测者的技术水平、环境条件影响及测量方法等)不变的情况下,对某一被测物理量所进行多次测量的一种方法。在实际测量工作中,由相同设备、相同人员、相同环境和相同方法所获得的各测量值可视为是等精度测量值。文献[4]介绍了流量计量中的计量学基本原则——等精度传递理论。

在测量实践中,有时为了获得准确度更高的测量结果,往往要求在不同的测量环境条件下,使用不同的测量仪器,选用不同的测量者和不同的测量次数,采用不同的测量方法进行对比测量,这种测量方法称为不等精度测量(unequally accurate measurement)。不等精度测量的不确定度应采用加权方式计算[5-6]。

若无特别说明,本文中所涉及的测量均指等精度测量。

2 误差的种类和应用

误差公理认为误差自始至终存在于一切科学实验和测量之中,是不可避免的,即误差无处不在,真值是不可知的。在实际应用工作中,可用约定真值或相对真值来代替理论概念中的理想真值。约定真值一般包括约定值、指定值和最佳估计值三种类型。

测量误差最基本的表示方法有如下三种:①绝对误差=测量值-真值,绝对误差通常简称为误差(即真误差);②相对误差=绝对误差/真值≈绝对误差/测量值;③引用误差=示值误差/测量范围上限(或全量程)。残差(又称剩余误差)=测量值-估计值,残差可认为是真误差的估计值。绝对误差和相对误差通常用于单值点测量误差的表示,而对于具有连续刻度和多档量程的测量仪器的误差则通常采用引用误差来表示。

按误差的特点和性质可将其分为粗大误差(parasitic error)、系统误差(systematic error)和随机误差(random error)三大类。可消除的粗大误差(又称过失误差,没有规律可循)应予全部剔除,系统误差(又称规律误差、理论误差或方法误差,一个定值或服从函数规律)反映测量的正确度(correctness),随机误差(旧称偶然误差、不定误差,服从统计规律,大多数服从正态分布规律)反映测量的精密度(precision),测量的准确度(accuracy,又译为精确度)则是用综合误差(即测量不确定度)来衡量的,有时也用极限误差来衡量测量的准确度。逐项获得测量的系统误差和随机误差,采用误差合成的方法(各系统误差绝对值相加得系统误差范围,各随机误差均方根合成则得随机误差范围。系统误差范围加随机误差范围可得综合误差范围)合成综合误差,它表征了测量结果与真值的不一致程度。

泛指性的“精度”一词常被用作“精确度(即准确度)”或“精密度”的替代词,因其并无明确和严格的科学定义,故在学术论文中应慎用或弃用。

下面简要介绍一下随机误差所遵循的一些基本统计规律,首先需要介绍中心极限定理:

当测量次数n无限增大时,在真误差序列中,若比某真误差绝对值大的误差和比其绝对值小的误差出现的概率相等,则称该真误差为或然误差(probable error,又称概率误差,它在衡量射击精密度时尤其显得重要),记作ρ。

作为精密度的评定指标,中误差最为常用,因为它反映了真误差分布的离散程度。

通常以2倍或3倍的中误差作为随机误差的极限误差(limit error),其置信概率分别是9544%(2σ准则)和9973%(3σ准则)。如果某个误差超过了极限误差,就可以认为它是粗大误差而被剔除,其相应的测量值应舍弃不用。

对于某个测量值,通常采用相对中误差(即中误差和测量值之比,又称相对标准差)配合中误差来衡量,它能更全面地表达测量值的好坏。

英国物理学家、化学家和数学家瑞利勋爵(Lord Rayleigh,1842—1919)以严谨、广博和精深而著称,他善于利用简单的设备做实验而能获得十分精确的数据。他因对气体密度的精确研究并因此参与发现稀有气体(旧称惰性气体)氩而荣获1904年诺贝尔物理学奖。1892年瑞利在研究氮气时发现[7]:从液态空气中分馏出来的氮,其密度为12572 kg/m3,而用化学方法直接从亚硝酸铵中得到的氮,其密度则为12508 kg/m3(现在的最权威数据125046 kg/m3是基于0 ℃和01 MPa时),前者比后者大05117%,因实验中已排除了粗大误差的可能,这一差异已远远超出随机误差的正常范围(现在通过t检验准则可以判定当时瑞利测得的空气中氮的密度数据是存在系统误差的)。英国物理化学家和放射化学家拉姆赛(Sir William Ramsay,1852—1916,1904年诺贝尔化学奖获得者)注意到这个问题并要求与瑞利合作对此问题展开共同研究,最终他们利用光谱分析法于1894年8月13日发现了第一种稀有气体─氩(Ar)。氩元素的发现是科学家们注意测量结果中的微小误差(实际上是系统误差)而取得重大科学发现的经典范例,是名副其实的“第三位小数”的胜利[8]。随后,其他稀有气体氦(He,1895年3月)、氪(Kr,1898年5月)、氖(Ne,1898年6月)、氙(Xe,1898年7月)、氡(Rn,1899年,继钋Po、镭Ra和锕Ac之后第4个被发现的天然放射性元素)陆续被拉姆赛等人所发现,稀有气体的发现完善和发展了俄国化学家门捷列夫(1834—1907)的元素周期表(1869年)。

上一篇:捋顺力学实验思路,深挖高考命题规律

上一篇:电磁学设计性实验开设的相关研究

相关范文